

Integrative approach in Corona times

Covid19 belongs to the viral infections that have always been with us. In some years more harmless, but from time to time with a higher risk potential. What is particularly unsettling for us is that transmission often occurs even from a symptomless carrier. According to Stanford University on 26.10.2020, the mortality rate is <0.2%, which is still higher than for "normal" influenza. The information policy during the pandemic has led to disinformation, uncertainty and fear among the general population rather than to education and motivation to take precautions themselves. And lots of toilet paper may calm people down, but effective prophylaxis looks different.

The discovery of a miracle pill is not in sight at the moment. As with influenza, the effectiveness of covid vaccines will depend on whether and how the virus changes. It remains unclear whether and what side effects are to be expected, as well as when and for whom a vaccination will be available.

So what can we do? What advice can we give our patients on how to do something preventive to build up a certain level of protection? Many ask about this because they want to do something to protect themselves and their health.

In addition to the sensible prescribed measures such as hand hygiene, distance and reduction of personal contacts, the following immunoregulatory and antiviral preventive measures, among others, have proven effective in everyday practice:

- Rest and sufficient sleep
- Relaxing, loving mindfulness, having time for yourself, your loved ones, for essentials
- Exercise with proper breathing
- Sufficient drinking: water, lemon water, coconut water, herbal teas
- Natural, antiviral diet rich in vital substances: fruit, vegetables, salads, lots of herbs, wild herbs, spices (including wild garlic, garlic, onion, curcuma, cinnamon, ginger)
- Eat slowly with thorough chewing to pre-digest in the mouth so as not to overload the gut-associated immune system, which makes up 80% of our immune system.
- Avoiding gut-heavy foods as much as possible
- Intermittent fasting, preferably dinner-cancelling

For which prophylaxis recommendation is there good evidence?

In addition to the basic measures already recommended, some approaches are listed below for suggestion and selection (without claiming to be complete). These can be recommended in individual cases and make sense especially if there is an individual deficiency and no contraindications are present. Of course, this cannot be a universal prescription. In any case, however, these substances are not expensive in this application over a few weeks, are readily available and very safe.

- Vitamin D 1,000-3,000 IU/d
- Vitamin C 500 mg 1-3/d
- Melatonin 2 mg/n
- Zinc 30-50 mg/d
- Quercetin 250 mg/d, dose carefully in hypothyroidism
- Acetylsalicylic acid 80-100 mg/d
- Famotidine 20-40 mg/d if needed instead of PPI

Among others, the following have also proven themselves **in practice**:

- Microimmunotherapy:

Formula EID: 1-2 capsules/day (general immune support). Formula MISEN: 1 capsule/day (regulation of the neuro-endocrineimmune axis in anxiety and stress).

- Selenium, L-lysine (1000 mg), Cistus, Matricell, GripBalance (from Nahani)

In any case, it is very important and helpful that the patient feels empowered himself and does not wait anxiously for symptoms of illness. He needs the confidence and hope that his body will not let him down in this situation. If we as doctors can support and strengthen him in this, we have achieved a lot.

A good and practicable recommendation for therapy in case of illness can be found in the "EVMS Critical Care COVID-19 Management Protocol 11-03-2020 | evms.edu/covidcare". Essentially, it consists of intensifying the above-mentioned measures.

As I said, this cannot be a universal recipe, but a suggestion. You have to check what of it can be helpful for your patients. I have not gone into detail about the intestines here, that would be carrying owls to Athens.

All the best, don't be afraid and stay healthy!

With best regards,

Salzburg, 19.11.2020

Dr. Sepp Fegerl

Sources:

1. Maghbooli Z, Sahraian MA, Ebrahimi M, Pazoki M, Kafan S. Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/ml reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PloS ONE 2020; 15:e0239799.

2. Kaufman HW, Niles JK, Kroll MH, Bi C, Holick MF. SARS-CoV-2 positivity rates associated with circulating 25hydroxyvitamin D level. PloS ONE 2020; 15:e0239252.

 Grant WB, Lahore H, McDonnell SL, Baggerly CA, French Cb, Aliaono JL. Evidence that Vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients 2020; 12:988.
 Lau FH, Majumder R, Torabi R, Saeg F, Hoffman R, Cirillo JD. Vitamin D insufficiency is prevalent in severe COVID-19. medRxiv 2020.

5. Marik PE, Kory P, Varon J. Does vitamin D status impact mortlality from SARS-CoV-2 infection? Medicine in Drug Discovery 2020.

6. Rhodes JM, Subramanian S, Laird E, Kenny RA. Editorial: Low population mortality from COVID-19 in countries south of 35 degrees North - supports vitamin D as a factor determining severity. Alimentary Pharmacology & Therapeutics 2020; (in press).

7. Dancer RC, Parekh D, Lax S et al. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax 2015; 70:617-24.

8. LLie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res 2020.

9. Daneshkhah A, Eshein A, Subramanian H. The role of vitamin D in suppressing cytokine storm of COVID-19 patients and associated mortality. medRxiv 2020.

10. Bergman P, Lindh AU, Bjorkhem-Bergman L, Lindhagen L. Vitamin D and respiartory tract infections: A systematic review and meta-analysis of randomized controlled trials. PloS ONE 2013; 8:e65835.

11. Carpagnano GE, Lecce V, Quaranta VN, Zito A, Buonamico E. Vitamin D deficiency as a predictor of poor prognosis in patients with acute respiratory fialure due to COVID-19. J Endocrinol Invest 2020.

12. Israel A, Cicurel A, Feldhamer I et al. The link between vitamin D deficiency and Covid-19 in a large population. medRxiv 2020.

13. Radujkovic A, Hippchen T, Tiwari-Heckler S, Dreher S, Merle U. Vitamin D deficiency and outcome of COVID-19 patients. Nutrients 2020; 12:2757.

14. Rizzoli R. Vitamin D supplementation: upper limit for safety revisited. Aging Clin Exp Res 2020.

15. Annweiler C, Hanotte B, de L'Eprevier CG, Sabatier JM, Lafaie L. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. Journal of Steroid Biochemistry & Molecular Biology 2020.

16. Moozhipurath RK, Kraft L, Skiera B. Evidence of protective role of Ultraviolet-B (UVB) radiation in reducing COVID-19 deaths. Nature Research 2020; 10:17705.

17. Maggini S, Beveridge S, suter M. A combination of high-dose vitamin C plus zinc for the common cold. Journal of International Medical Research 2012; 40:28-42.

18. Colunga Biancatelli RM, Berrill M, Catravas JD, Marik PE. Quercetin and Vitamin C: experimental therapy for the prevention and treatment of SARS-CoV-2 via synergistic action. Front Immunol 2020.

19. Kyung Kim T, Lim HR, Byun JS. Vitamin C supplementaion reduces the odds of developing a common cold in Republic of Korea Army recruits: a randomised controlled trial. BMJ Mil Health 2020.

20. Colunga Biancatelli RM, Berrill M, Marik PE. The antiviral properties of vitamin C. Expert Rev Anti Infect Ther 2020; 18:99-101.

21. Hiedra R, Lo KB, Elbashabsheh M, Gul F, Wright RM. The use of IV vitamin C for patients with COVID-19: a case series. Exp Rev Anti Infect Ther 2020.

22. Khaerunnisa S. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compuns by molecular docking study. medRxiv 2020.

23. Chen L, Li J, Luo C, Liu H, Xu W, Chen G. Binding interaction of quercetin-3-B-galactoside and its synthetic derivatives with SARS-CoV 3CL: structure-activity relationship reveal salient pharmacophore features. Bioorganic & Medicinal Chemistry Letters 2006; 14:8295-306.

24. Nain Z, Rana HK, Lio P, Islam SM, Summers MA, Moni MA. Pathogenic profiling of COVID-19 and SARS-like viruses. Briefings in Bioinformatics 2020.

25. Yi L, Li Z, Yuan K et al. Small molecules blocking the entry of severe respiratory syndrome coronavirus into host cells. J Virol 2020; 78:11334-9.

26. Shakoor H, Feehan J, Dhaheri AS, Ali HI, Platat C, Ismail LC. Immune-boosting role of vitamins D,C,E, zinc, selenium and omega-3 fatty acids: could they help against COVID-19. Maturitas 2020.

27. Calder PC. Nutrition, immunity and COVID-19. BMJ Nutrition, Prevenion & Health 2020; 3.

28. Abian O, Ortega-Alarcon D, Jimenez-Alesanco A, Ceballos-Laita L, Vega S. Structural stability of SARS-CoV-2 3CLpro and identification of quercetin as an inhibitor by experimental screening. International Journal of Biological Macromolecules 2020; 164:1693-703.

29. Pistollato F, Masias M, Agudo P, Giampieri F. Effects of phytochemicals on thyroid function and their possible role in thyroid disease. Ann N Y Acad Sci 2019; 1433:3-9.

30. Tonstad S, Jaceldo-Siegl K, Messina M, Haddad E. The association between soya consumption and serum thyroid-stimulating hormone in the Adventist Health Study-2. Public Health Nutr 2016; 19:1464-70.

31. Colunga Biancatelli RM, Berrill M, Mohammed YH, Marik PE. Melatonin for the treatment of sepsis: the scientific rationale. J Thorac Dis 2020; 12 (Suppl 1):S54-S65.

32. Reiter RJ, Abreu-Gonzalez P, Marik PE, Dominguez-Rodriguez A. Therapeutic algorithm for use of melatonin in patients with COVID-19. Front Med 2020; 7:226.

33. Reiter RJ, Sharma R, Ma Q, Dominquez-Rodriguez A, Marik PE, Abreu-Gonzalez P. Melatonin inhibits COVID-19-induced cytokine storm by reversing aerobic glycolysis in immune cells: A mechanistic analysis. Medicine in Drug Discovery 2020; 6:100044.

34. Zhang R, Wang X, Ni L, Di X, Ma B. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci 2020; 250:117583.

35. Jehi L, Ji X, Milinovich A, erzurum S, Rubin B, Gordon S. Individualizing risk prediction for positive COVID-19 testing. Results from 11,672 patients. Chest 2020.

36. Kleszczynski K, Slominski AT, Steinbrink K, Reiter RJ. Clinical trials for use of melatonin to fight COVID-19 are urgently needed. Nutrients 2020; 12.

37. Coto-Montes A, Boga JA. ER stress and autophagy induced by SARS-CoV-2: The targer for melatonin treatment. Melatonin Res 2020; 3:346-61.

 38. Gandolfi JV, Di Bernardo AP, Chanes DA et al. The effects of melatonin supplementation on sleep quality and assessment of the serum melatonin in ICU patients: A randomized controlled trial. Crit Care Med 2020.
 39. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn2+ inhibits Coronavirus and Arterivirus RNA polymerase activity In Vitro and Zinc ionophores block the replication of these viruses in cell culture. PLos Pathog 2010; 6:e1001176.

40. Gammoh NZ, Rink L. Zinc in Infection and Inflammation. Nutrients 2017; 9.

41. Hemila H. Zinc lozenges and the common cold: a meta-analysis comparing zinc acetate and zinc gluconate, and the role of zinc dosage. J Royal Soc Med Open 2017; 8:1-7.

42. Singh M, Das RR. Zinc for the common cold. Cochrane Database of Syst Rev 2013; 6:CD001364.43. Hoeger J, Simon TP, Beeker T, Marx G, Haase H. Persistent low serum zinc is associated with recurrent

sepsis in critically ill patients - A pilot study. PloS ONE 2017; 12:e0176069.

44. Shakoor H, Freehan J, Mikkelsen K, Al Dhaheri AS, Ali HI. Be well: A potential role for vitamin B in COVID-19. Maturitas 2020.

45. dos Santos LM. Can vitamin B12 be an adjuvant to COVID-19 treatment? GSC Biological and Pharmaceutical Sciences 2020; 11.

46. Kandeel M, Al-Nazawi M. Virtual screening and repurposing of FDA approved drugs against COVID-19 main protease. Life Sci 2020; 251:117627.

47. Tan CW, Ho LP, Kalimuddin S, Cherng BP, Teh YE. Cohort study to evaluate effect of vitamin D, magnesium, and vitamin b12 in combination on severe outcome progression in older patients with coronavirus (COVID-19). Nutrition 2020; 80:111017.

48. Zhang P, Tsuchiya K, Kinoshita T, Kushiyama H, Suidasari S, Hatakeyama M. Vitamin B6 prevents IL-1B protein production by inhibiting NLRP3 inflammasome activation. J Biol Chem 2020; 291:24517-27.

49. Freedberg DE, Conigliaro J, Sobieszczyk ME, Markowitz DD. Famotidine use is associated with impoved clinical outcomes in hospitalized COVID-19 patients: A propensity score matched retrospective cohort study. medRxiv 2020.

50. Janowitz T, Baglenz E, Pattinson D, Wang TC, Conigliaro J. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalized patients: a case series. Gut 2020; 69:1592-7.

51. Mather JF, Seip RL, McKay RG. Impact of famotidine use on clinical outcomes of hospitalized COVID-19 patients. Am J Gastroenterol 2020.

52. Malone RW, Tisdall P, Fremont-Smith P, Liu Y, Huang XP, White KM. COVID-19: Famotidine, Histamine, Mast Cells, and mechanisms. Research Square 2020.

53. Sethia R, Prasad M, Mahapatra SJ, Nischal N, Soneja M. Efficacy of famotidine for COVID-19: A systematic review and meta-analysis. medRxiv 2020.

54. Shoaibi A, Fortin S, Weinstein R, Berlin JA. Comparative effectiveness of famotidine in hospitalized COVID-19 patients. medRxiv 2020. 55. Yeramaneni S, Doshi P, Sands K, Cooper M, Kurbegov D, Fromell G. Famotidine use is not associated with 30-day mortality: A coarsened exact match study in 7158 hospitalized COVID-19 patients from a large healthcare system. medRxiv 2020.

56. Almario CV, Chey WD, Spiegel BM. Increased risk of COVID-19 among users of proton pump inhibitors. Am J Gastroenterol 2020.

57. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res 2020.

58. Lehrer S, Rheinstein PH. Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. In Vivo 2020; 34:3023-6.

59. Maurya DK. A combination of Ivermectin and Doxycycline possibly blocks the viral entry and modulate the innate immune response in COVID-19 patients. ChemRxiv 2020.

60. Yang SN, Atkinson SC, Wang C, Lee A. The broad spectrum antiviral ivermectin targets the host nuclear transport importin alpha/beta1 heterodimer. Antiviral Res 2020; 177:104760.

61. Dayer MR. Coronavirus (2019-nCoV) deactivation via spike glycoprotein shielding by old drugs, bioinformatic study. Preprints 2020.

62. Swargiary A. Ivermectin as a promising RNA-dependent RNA polymerase inhibitor and a therapeutic drug against SARS-CoV2: Evidence from silico studies. Research Square 2020.

63. Zhang X, Song Y, Ci X, An N, Ju Y. Ivermectin inhibits LPS-induced production of inflammatory cytokines and improves LPS-induced survival in mice. Inflamm Res 2008; 57:524-9.

64. Ci X, Li H, Yu Q et al. Avermectin exerts anti-inflammatory effect by downregulating the nuclear transcription factor kappa-B and mitogen activated protein kinase pathway. Fundamental & Clinical Pharmacology 2009; 23:449-55.

65. Rajter JC, Sherman MS, Fatteh N, Vogel F, Sacks J, Rajter JJ. ICON (Ivermectin in COvid Ninteen) study: Use of ivermectin is associated with lower mortality in hospitalized patients with COVID-19. Chest 2020.
66. Gorial FI, Mashhadani S, Sayaly HM, Dakhil BD, AlMashhadani MM. Effectiveness of Ivermectin as add-on therapy in COVID-19 management (Pilot Trial). medRxiv 2020.

67. Khan MS, Khan MS, Debnath Cr, Nath PN, Mahtab MA. Ivermectin treatment may improve the prognosis of patients with COVID-19. Archivos de Bronconeumologia 2020.

68. Hashim HA, Maulood MF, rasheed AM, Fatak DF, Kabah KK. Controlled randomized clinical triaal on using Ivermectin with Doxycycline for treating COVID-19 patients in Bagdad, Iraq. medRxiv 2020.

69. Murshed MR, Bhiuyan E, Saber S, Alam RF, Robin RF. A case series of 100 COVID-19 positive patients treated with combination of Ivermectin and Doxycycline. Bangladesh Coll Phys Surg 2020; 38:10-5.

70. Chamie J. Real-World evidence: The case of Peru, casuality between Ivermectin and COVID-19 infection fatality rate. ResearchGate 2020.

Patel AN, Desai SS, Grainger DW, Mehra MR. Usefulness of ivermectin in COVID-19 illness. medRxiv 2020.
 Jans DA, Wagstaff KM. Ivermectin as a broad-spectrum host directed anti-viral: The real deal. Cells 2020; 9:2100.

73. DiNicolantonio JJ, Barroso-Arranda J, McCarty M. Ivermectin may be a clinically useful anti-inflammatory agent for late-stage COVID-19. Open Heart 2020; 7:e001350.

74. Sharun K, Dhama K, Patel SK, Pathak M, Tiwari R. Ivermectin, a new candidate therapeutic against SARS-CoV-2/COVID-19. Ann Clin Microbiol Antimicrob 2020; 19:23.

75. Peralta EG, Fimia-Duarte R, Cardenas JW, Dominguez DV, Segura RB. Ivermectin, a drug to be considered for the prevention and treatment of SARS-CoV-2. Brief literature review. EC Veterinary Science 2020; 5:25-9.

76. Al-Jassim KB, Jawad AA, Al-Masoudi EA, Majeed SK. Histopathological and biochemical effects of ivermectin on kidney functions, lung and the ameliorative effects of vitamin C in rabbits. Bas J Vet Res 2016; 14:110-24.
77. Mudatsir M, Yufika A, Nainu F, Frediansyah A, Megawati D. Antiviral activity of ivermectin against SARS-

CoV-2: an old-fashioned dog with a new trick- Literature review. Sci Pharm 2020; 88:36.